

Experiences in implementing acoustic pingers in US and Canadian fisheries

Dr. Debi Palka
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, MA

NOAA FISHERIES SERVICE

Outline

- Brief history
 - 1. Small scale investigations
 - 2. Scientific controlled experiments
 - 3. Regulations
 - 4. Commercial fisheries
 - a. Limited
 - b. Full scale
- Issues investigated
 - Ø Bycatch rates
 - **Ø** Displacement
 - **Ø** Habituation
 - **Ø** Depredation/"dinner bell effect"
 - **Ø** Compliance

Pinger History

- Lien *et al.* 1992
- Newfoundland
- Fish traps and gillnets
- Humpback whales

- Commercially made
- Small and large scale scientific controlled experiments
- Harbor porpoises in sink gillnets (salmon, groundfish)
- Common dolphins + other spp in drift gillnets (swordfish, sharks)

Initial investigations

Bay of Fundy groundfish sink gillnet harbor porpoises

Trippel et al. 1999

Vancouver Island salmon gillnet harbor porpoise

Olesiuk *et al.* 2002 Koschinski & Culik 1997 Culik *et al.* 2001

Washington salmon gillnet harbor porpoise

Laake *et al.*Gearin *et al.*Olesiuk *et al.*Koschinski & Culik 1997 Culik *et al.*

California/Oregon swordfish & shark drift gillnet common, sea lions, beaked whales +

Barlow & Cameron 2003

Gulf of Maine groundfish sink gillnet harbor porpoises

Lein and Hood 1994 Kraus *et al.* 1997a,b Allen *et al.* 1999

Mid - Coast

Nov 1- Dec 31, 1995

Mar 25 – Apr 25, 1995

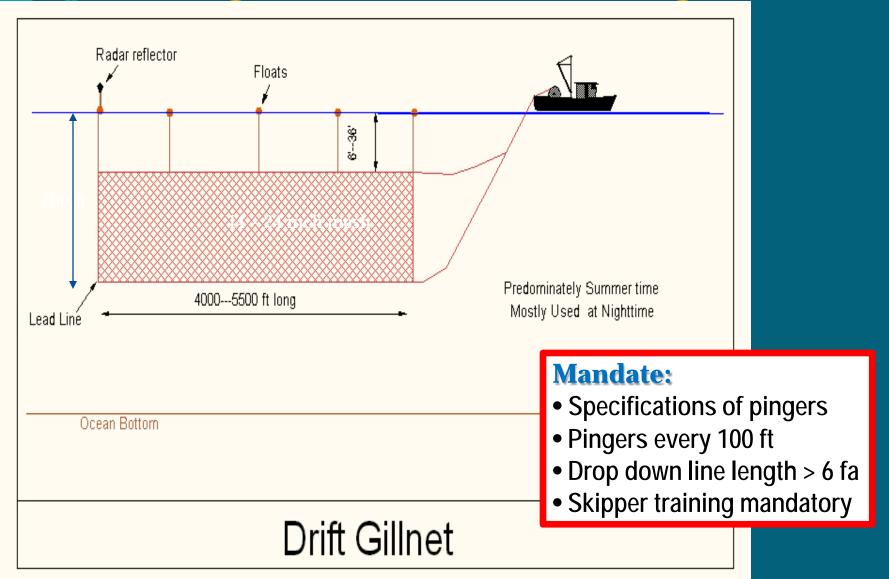
Nov 1 – Oct 31, 1996

Mar 25 – Apr 25, 1997

Sep 15 - Dec 31, 1997

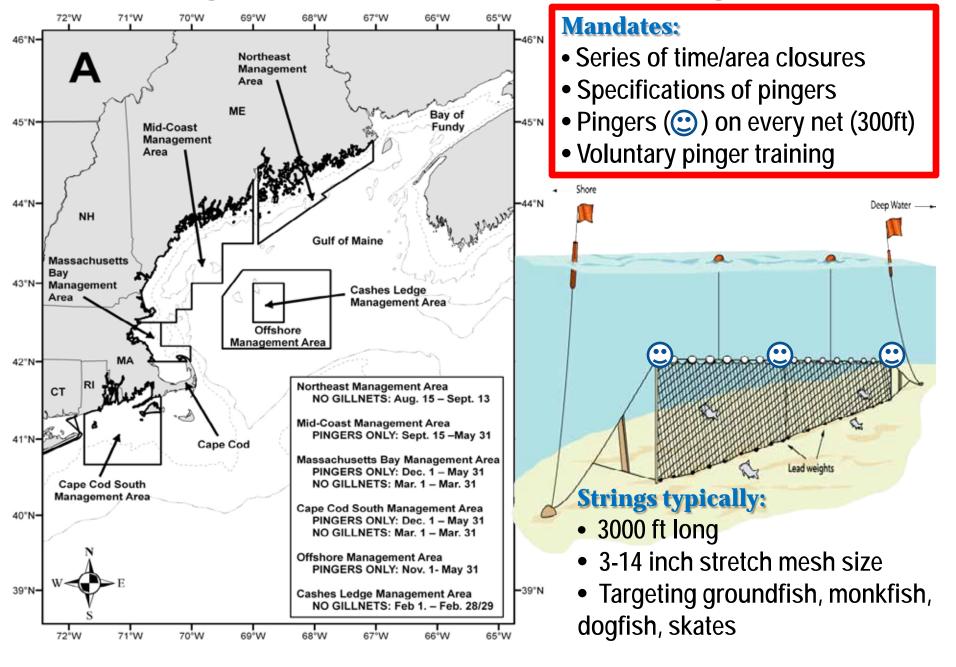
South of Cape Cod Mar 1-30, 1996 Mass Bay Mar 1-30, 1996

USA:

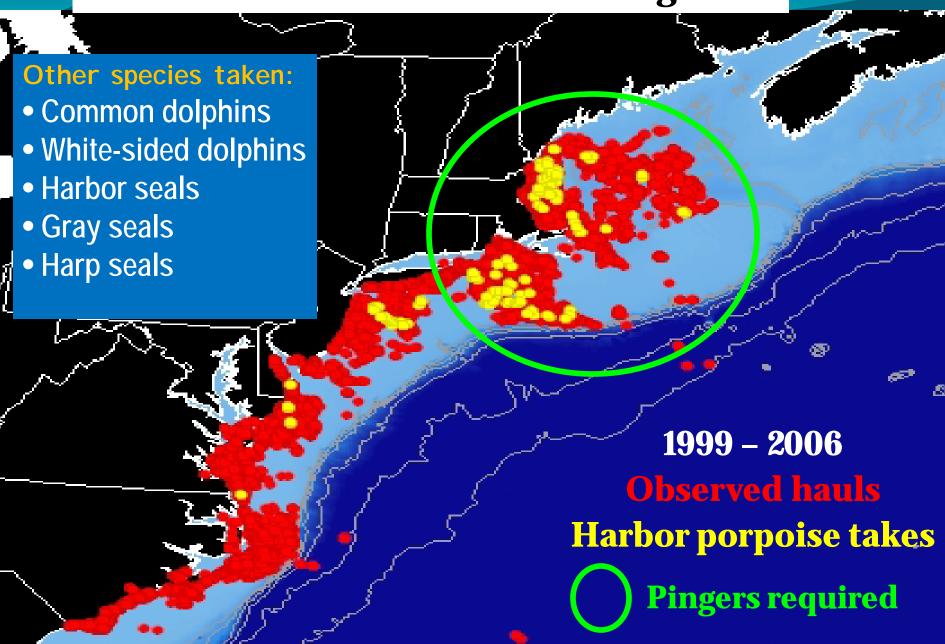

Through the Take Reduction Team process, regulations were developed by industry, scientists, NGO's and government managers

Canada:

Bay of Fundy gillnet fishery will close down if harbor porpoise bycatch is over 100 animals per season



1997 Regulations CA/OR drift gillnet



Target species: swordfish and thresher shark, fished from dusk to dawn

1999 Regulations Gulf of Maine sink gillnet

Northeast and Mid-Atlantic sink gillnet

Outline

- Brief history
 - 1. Small scale investigations
 - 2. Scientific controlled experiments
 - 3. Regulations
 - 4. Commercial fisheries
 - a. Limited
 - b. Full scale
- Issues investigated:
 - Ø Bycatch rates
 - Ø Displacement
 - Ø Habituation
 - Ø Depredation/"dinner bell effect"
 - **Ø** Compliance

CA/OR drift gillnet

	% redu				
species	scientific experiment 96-97	operational 96-09	bycatch rate increase in operational fishery?		
short beaked common	85	47	↑		
N. elephant seal	69	81			
Pacific white sided	70	44	↑		
beaked whales	100	100			
N. right whale dolphin	38	-142	↑		
CA sea lion	71	-93	↑		
All cetaceans	69	48	↑		
All pinnipeds	71	12	^		

	% reduction of				
	harbor porpoise bycatch				
	Trippel et al. Gearin et al.				
	1999 2000				
year	Bay of Fundy	Washington			
1995		95			
1996	68	97			
1997	85	84			

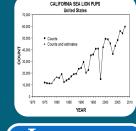
Conclusion: Pingers reduced bycatch of most species

Gulf of Maine sink gillnet

		bycatch rate		
	scientific experimental			increase in
	experiment	fishery	operational	operational
Species	1994	94-97	99-07	fishery?
harbor porpoise	92	84, 50	60	1
harbor seal	50	?	28	^

Conclusions:

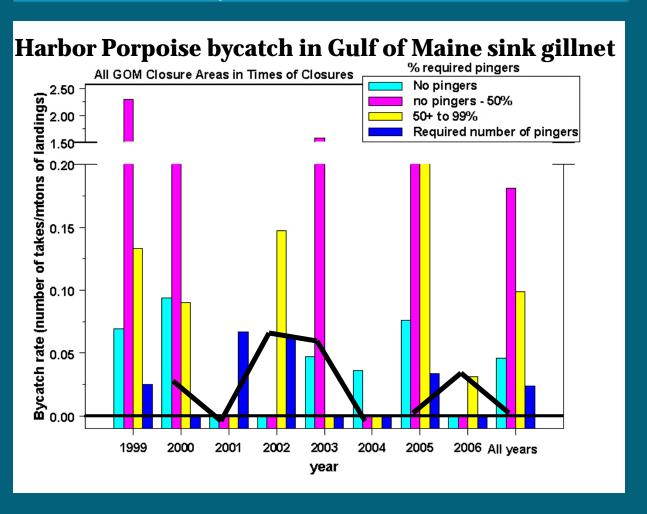
Bycatch rates decreased more in scientific-controlled experiments then in operational fisheries. Perhaps due to:

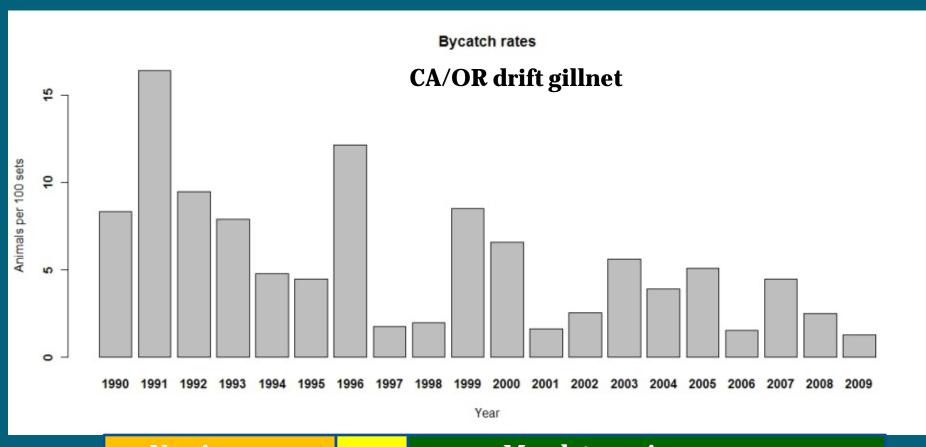

- Scientific control (compliance)
- Differences in gear configurations
- Differences in environmental conditions

Gulf of Maine sink gillnet

Mairio Siriic	9
% reduction in harbor porpoise bycatch rate	Number of hauls (no pingers/all pingers)
100	98/431
40	1648/1187
100	733/276
59	678/512
	% reduction in harbor porpoise bycatch rate 100 40 100

CA/OR drift gillnet




Increase numbers of sea lions

Conclusion: Bycatch rates vary annually, spatially, and in parts of sub-fisheries

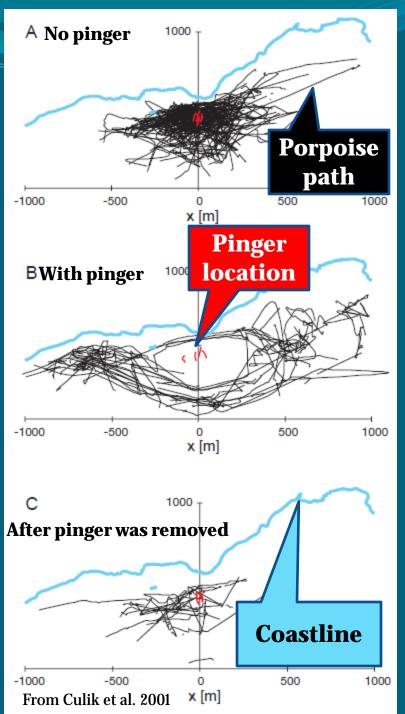
Conclusion: Bycatch rates vary annually, spatially, and in parts of sub-fisheries

No pingers

Mandatory pingers

Delphinus delphis bycatch per 100 sets

- Bycatch rates are also associated with other factors, such as for harbor porpoises in the Gulf of Maine :
 - Season
 - SST
 - North Atlantic Oscillation
 - Twine size
 - Mesh size
 - String length
 - Soak duration


Displacement

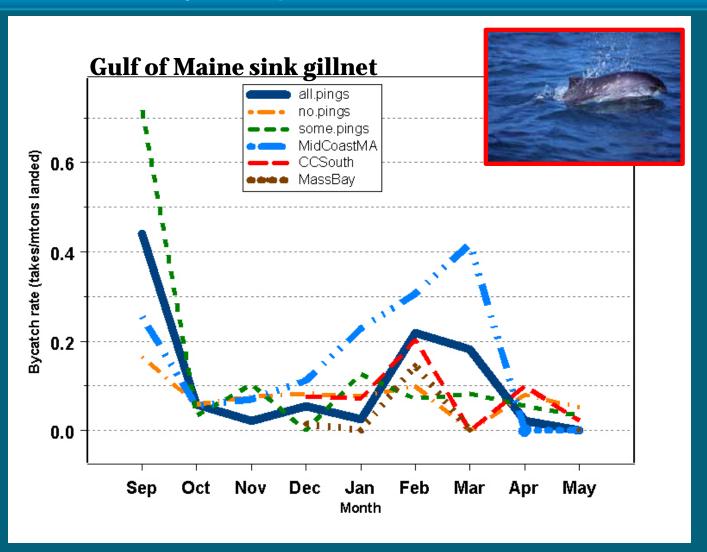
Methods:

Monitored changes in density and distribution around pinger

Results:

Displaced Distance		
(m)	Location	Reference
991	Bay of Fundy	Johnston 2002
208	Bay of Fundy	Cox <i>et al.</i> 2001
200	Vancouver	Olesiuk <i>et al.</i> 2002
133	Vancouver	Koschinski & Culik 1997
130	Vancouver	Culik <i>et al.</i> 2001
125	Washington	Laake <i>et al.</i> 1998

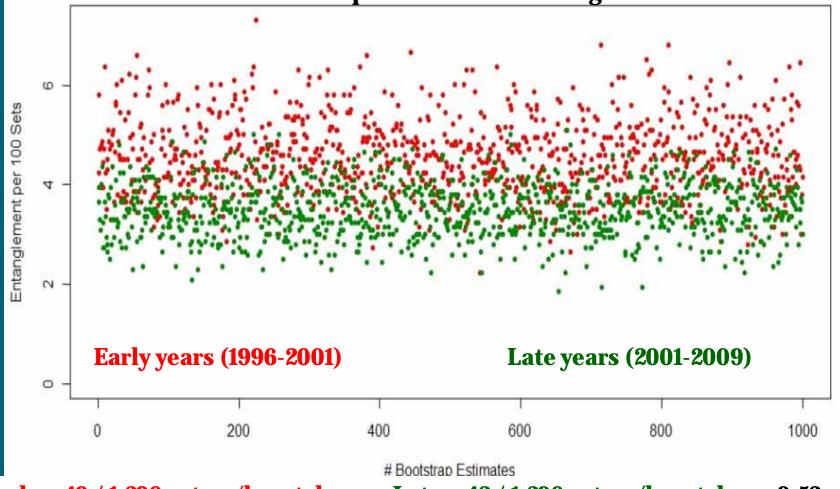
Habituation


Change	in	after	Area	Reference	Species
Method: Monitor change in distribution around pinger in scientific experiment					
	animals around		North	Cox et al. 2003; Read et al.	
↑	net	immed.	Carolina	2006	bottlenose dolphin
50% ↓	closest approach	4 days	Bay of Fundy	Cox <i>et al.</i> 2001	harbor porpoise
NS	closest approach	5 days	Vancouver	Culik <i>et al.</i> 2001	harbor porpoise
density	y back to control level	6 days	Vancouver	Koschinski & Culik 1997	harbor porpoise
NS ↓	min distance	6 days	Vancouver	Koschinski & Culik 1997	harbor porpoise
<u>t</u>	thod: Note that the second se	animals around net 50% ↓ closest approach NS closest approach density back to control level	animals around ↑ net immed. 50% ↓ closest approach 4 days NS closest approach 5 days density back to control level 6 days	animals around ↑ animals around immed. Carolina 50% ↓ closest approach 4 days Bay of Fundy NS closest approach 5 days Vancouver density back to control level 6 days Vancouver	animals around net immed. North Cox et al. 2003; Read et al. 2006 Solve I closest approach Carolina Cox et al. 2003; Read et al. 2006 Cox et al. 2001 Cox et al. 2001

Method: Monitor bycatch rates in commercial fishery

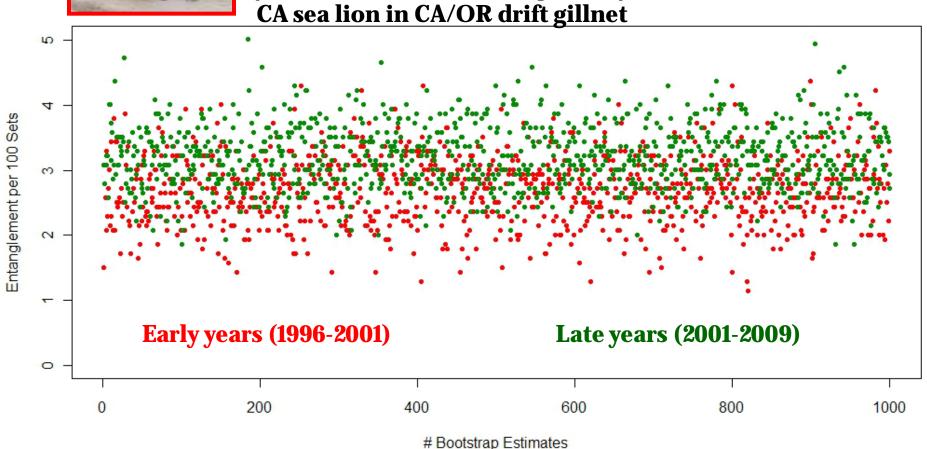
		fishery bycatch				
	NS	rate	9 years	Gulf of Maine	Palka <i>et al.</i> 2008	harbor porpoise
		fishery bycatch				all spp except sea
	NS ↓	rate	14 years	California	Carretta & Barlow 2011	lion
		fishery bycatch				
yes	↑ 2x	rate	14 years	California	Carretta & Barlow 2011	CA sea lion

Habituation


Conclusion: In commercial fisheries bycatch rates vary annually and monthly so not possible to show habituation

Habituation

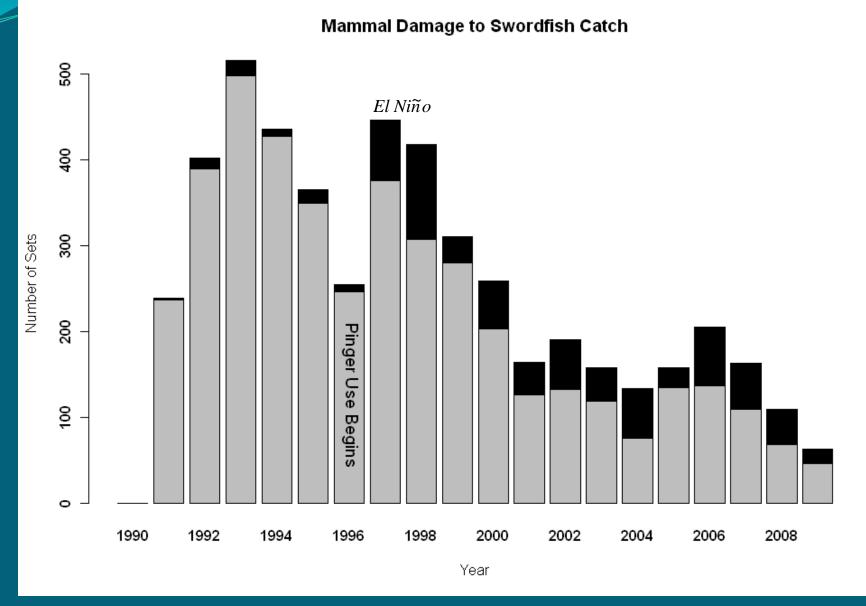
Bycatch Rates in sets with 30+ Pingers, Early vs Late Years Common dolphins in CA/OR drift gillnet



Early = 49 / 1,396 sets w/bycatch

Late = 42 / 1,396 sets w/bycatch p=0.52

Bycatch Rates in sets with 30+ Pingers, Early vs Late Years


Early = **31** / **1,396** sets w/bycatch

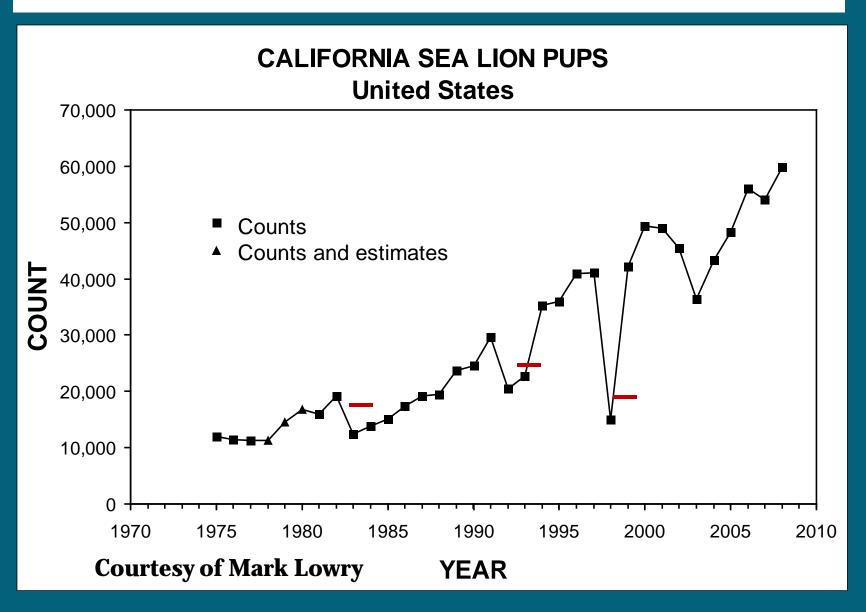
Late = 42 / 1,396 sets w/bycatch p=0.24

Depredation

- Seal depredation similar in pingered and nonpingered hauls
 - Gulf of Maine: 1994 experiment (Kraus *et al.* 1997)
 - Washington: 1994-97 experiments (Gearin *et al.* 2000)
- Depredation increased in pingered hauls
 - North Carolina: in 2003 bottlenose dolphins eat Spanish mackerel; catch 38% less when dolphins around (Read et al. 2003)
 - California: during 1996-2009 mammals eat swordfish; probably not due to pingers (Carretta & Barlow 2011)

CA/OR drift gillnet fishery

CA sea lion depredation of swordfish catch Photos courtesy Lyle Enriquez, SW Region



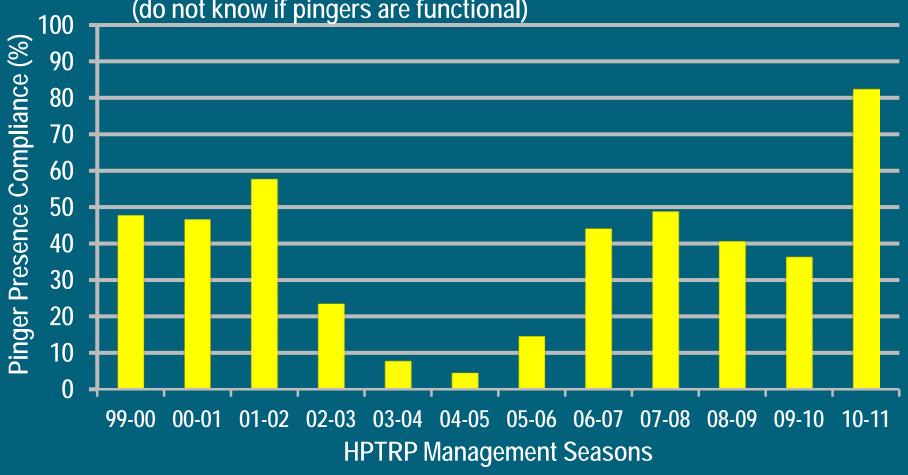
Depredation

Carretta and Barlow 2011

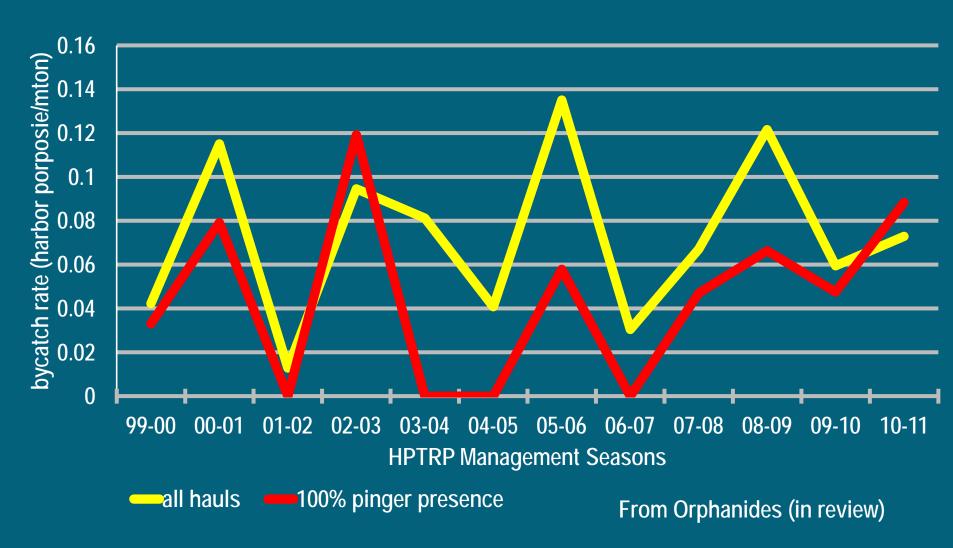
- Investigated effects of vessel, gear and environmental factors on depredation
- No difference in proportion of sets depredated between sets without pingers and sets with >=30 pingers
- Factors associated with depredation were: total catch, month, latitude, longitude, and presence of deck lights.
- Number of pingers was not significantly related to presence of depredation.

Increase in bycatch and depredation probably due to increase in number of sea lions

Compliance - CA drift gillnet


- Limited pinger failure documented (3.7% of 502 sets) during 2001-2009
- Cetacean bycatch 10x higher in sets with nonfunctioning pingers compared to sets with functioning pingers

	No Bycatch	Bycatch >=1	Individuals/100sets
Pingers ok	471	15	4.7
Pinger failure	12	4	50.0


Proportion of sets with cetacean bycatch is significantly higher when pingers fail. p = 0.0000113 (Fisher Exact Test) Cattetta & Barlow 2011

Compliance - Gulf of Maine

Bycatch rates in Gulf of Maine lower when use all of the pingers (though do not know if all pingers are functional)

Why not complying?

(Bisack & Das 2011)

- Social-economic analysis modeled observer data from 61 vessels that carried observers during the 2009-2010 fishing year in the Gulf of Maine sink gillnet fishery.
- Vessels were more likely to violate the pinger requirements if:
 - They only fished with gillnet gear
 - They violated the pinger requirements in previous years
 - They belonged to a groundfish "sector"
 - They were not observed often (less than the median observer rate)
 - They were on smaller vessels
 - They had gross revenues greater than \$232K

Conclusions – bycatch rates

- 1. Pingers reduce bycatch of most species in the CA swordfish and shark drift gillnet and in the Gulf of Maine/Bay of Fundy sink groundfish gillnet fisheries
- 2. However, bycatch has increased in pingered nets for a few species
- 3. Pingers are not 100% effective, there is inter-annual and interseasonal differences
- 4. Other factors also are associated with bycatch rates, such as environmental factors (SST, El Niño/NAO), number of animals in the fishery area, mesh size, twine size, soak duration, and string length.
- 5. Bycatch rates in scientific controlled experiments appear to be less than that results during the operational fishery

Conclusions – displacement & habituation

- 1. Pingers seem to displace most animals a short distance from the pinger, as documented when following individual animals.
- 2. Habituation has been documented when pinger is in water for 4-6 days.
- 3. However the displacement does not appear to be displacement out of the habitat and the animals do not appear to habituate to operational fisheries since bycatch continues to occur in the operational fisheries.

Conclusions – depredation

- 1. Depredation occurs, with and without pingers. Other factors, such as the increased presence of CA sea lions could also be attributed to increased depredation.
- Pingers have been attributed to attracting more bottlenose dolphins to the fishing nets, thus, resulting in increased depredation.

Conclusions – compliance

- 1. Reducing compliance to pinger regulations has resulted in increased bycatch rates
- Non-compliance will probably always occur when humans are involved.

Food for thought ...

- Do we need to know how and why animals get entangled to fully develop very effective mitigation measures
- (or else can we be lucky and get the right combination of measures to be as effective as possible)

– Any questions?